An algorithm for reporting maximal c-cliques
نویسندگان
چکیده
Given two graphs, a fundamental task faced by matching algorithms consists of computing either the (Connected) Maximal Common Induced Subgraphs ((C)MCIS) or the (Connected) Maximal Common Edge Subgraphs ((C)MCES). In particular, computing the CMCIS or CMCES reduces to reporting so-called connected cliques in product graphs, a problem for which an algorithm has been presented in a recent paper I. Koch, TCS 250 (1-2), 2001. This algorithm suffers from two problems which are corrected in this note. Key-words: Maximal Common Subgraphs, Maximal cliques, Shape Matching ∗ INRIA Sophia-Antipolis, Geometrica project † IIT Bombay, India; [email protected]. Un algorithme de calcul des c-cliques maximales Résumé : Étant donnés deux graphes, un problème central rencontré par les algorithmes de mise en correspondance consiste à calculer tous les (Connected) Maximal Common Induced Subgraphs ((C)MCIS) ou les (Connected) Maximal Common Edge Subgraphs ((C)MCES). En particulier, le calcul des CMCIS ou CMCES est équivalent à celui de cliques dites c-connectées dans des graphes produits, problème pour lequel un algorithme a récemment été proposé I. Koch, TCS 250 (1-2), 2001. Malheureusement, cet algorithme souffre de deux erreurs qui sont corrigées dans cette note. Mots-clés : Plus grands graphes communs, Cliques Maximales, Shape Matching An algorithm for reporting maximal c-cliques 3
منابع مشابه
A note on the problem of reporting maximal cliques
Reporting the maximal cliques of a graph is a fundamental problem arising in many areas. This note bridges the gap between three papers addressing this problem: the original paper of Bron–Kerbosh [C. Bron, J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph, Communication of ACM 16 (9) (1973) 575–577], and two papers recently published in TCS, namely that of Tomita et al. [To...
متن کاملLinear-Time Enumeration of Isolated Cliques
For a given graph G of n vertices and m edges, a clique S of size k is said to be c-isolated if there are at most ck outgoing edges from S. It is shown that this parameter c is an interesting measure which governs the complexity of finding cliques. In particular, if c is a constant, then we can enumerate all c-isolated maximal cliques in linear time, and if c = O(log n), then we can enumerate a...
متن کاملExtracting of All Maximal Cliques: Monotone System Approach
NP-complicated problems have been described in the graph theory. An example is the extracting of all maximal cliques from a graph. Many algorithms for solving this problem have been described. However, complexity is linear to the number of maximal cliques. This paper discusses a new approach for extracting maximal cliques, based on the monotone system theory. The complexity of the presented alg...
متن کاملThe Parallel Maximal Cliques Algorithm for Protein Sequence Clustering
Problem statement: Protein sequence clustering is a method used to discover relations between proteins. This method groups the proteins based on their common features. It is a core process in protein sequence classification. Graph theory has been used in protein sequence clustering as a means of partitioning the data into groups, where each group constitutes a cluster. Mohseni-Zadeh introduced ...
متن کاملThe Worst-Case Time Complexity for Generating All Maximal Cliques
We present a depth-first search algorithm for generating all maximal cliques of an undirected graph, in which pruning methods are employed as in the Bron–Kerbosch algorithm. All the maximal cliques generated are output in a tree-like form. Subsequently, we prove that its worst-case time complexity is O(3n/3) for an n-vertex graph. This is optimal as a function of n, since there exist up to 3n/3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 349 شماره
صفحات -
تاریخ انتشار 2005